更多>>精华博文推荐
更多>>人气最旺专家

申博伟

领域:京华网

介绍:④优势道对剩余油的影响疏松的砂岩油藏经过长期注水冲刷后,极易形成次生高渗透带,一旦形成就会极易通过注示踪剂盼181;应用试井资料、直接或间接应用测井资料识别等方法识别【1蛇2】;根据物理模拟后,选取的实验参数利用灰色理论来识别【23】;根据选取动静态参数采取模糊综合判别来识别【241;从井组出发,利用综合判...

王凯凯

领域:新快报

介绍:(例如、就收捡购物车篮说看起是一项最简单的劳动岗位,实际上这个岗位的任务也有很多,除收捡购物车篮外,还要替换其它岗位的临时活动、随时监视员工的纪律、观察卖场的各种现象等等。利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站

利来国际老牌
本站新公告利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站
bt5 | 2019-01-20 | 阅读(415) | 评论(47)
高强度钢板在材料强度与生产成本方面也具有很强的竞争力,其采用也确实已经成为汽车制造轻量化最有效途径。【阅读全文】
利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站
rhp | 2019-01-20 | 阅读(541) | 评论(269)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
arb | 2019-01-20 | 阅读(802) | 评论(547)
(一)、测量液体的密度3.实验记录表格:液体的密度ρ/kg·m-3量筒中液体体积V/cm3量筒中液体的质量m/g杯和剩余液体的质量m2/g杯和液体的质量m1/g注意:  计算过程所用单位和测量结果所用的单位。【阅读全文】
6zq | 2019-01-20 | 阅读(565) | 评论(898)
3、活动期间,如遭遇自然灾害、网络攻击或系统故障等不可抗拒原因导致活动暂停举办或导致活动出现问题,阿里巴巴可依相关法律规定主张免责,无需因此承担赔偿或补偿责任。【阅读全文】
b4a | 2019-01-20 | 阅读(175) | 评论(587)
在工作中我发现工作的标准没有最好只有更好,只要在现行的基础上不断提升细节优化,工作标准与质量也会随之升华,从而开辟一个新的起点,为下次工作奠定框架。【阅读全文】
4ax | 2019-01-19 | 阅读(392) | 评论(364)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
ub5 | 2019-01-19 | 阅读(300) | 评论(268)
我觉得《幻乐之城》的价值就是我们希望用更高质感的方式,在电视上呈现出特别精彩的秀,一起了解到背后他们为这个故事的努力。【阅读全文】
dpg | 2019-01-19 | 阅读(688) | 评论(49)
经济手段的关键词有:经济政策、计划规划、经济利益的调整、价格杠杆、财政政策(财政收入、支出数量,税收、税率、国债等)、货币政策(货币供应量、信贷量、利率、存款准备金率);法律手段有经济立法、经济司法、查处、打击等,主要是调整社会经济关系,规范生产经营者的活动和市场秩序,保证经济正常运行。【阅读全文】
利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站,利来电游官方网站
xop | 2019-01-19 | 阅读(324) | 评论(401)
因此,大多数科学家认为,蛋白质是生物体的遗传物质。【阅读全文】
ebs | 2019-01-18 | 阅读(826) | 评论(541)
日韩之间的矛盾由来已久。【阅读全文】
dxy | 2019-01-18 | 阅读(216) | 评论(306)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
4kr | 2019-01-18 | 阅读(749) | 评论(606)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
h3n | 2019-01-18 | 阅读(511) | 评论(659)
体现共同富裕原则,广泛吸收社会资金,缓解就业压力,增加积累和税收。【阅读全文】
ubx | 2019-01-17 | 阅读(466) | 评论(627)
尤其对于井下办楼和供应处办楼的领导感到非常模糊,头脑中没有清晰的概念,有的甚至没有见过和认识,不清楚他们的职位和职责。【阅读全文】
i3n | 2019-01-17 | 阅读(415) | 评论(376)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
共5页

友情链接,当前时间:2019-01-20

利来娱乐账户 利来国际娱乐 利来娱乐w66 利来国际备用 利来国际老牌w66
利来老牌 wwww66com利来 利莱国际w66 利来国际w66手机版 w66.con
利来ag w66利来国际 利来国际官网 利来国际w66平台 w66com
利来国际旗舰版 利来国际最老牌 利来国际最给利的老牌最新 www.v66利来国际 利来国际旗舰版
齐齐哈尔市| 互助| 唐河县| 新邵县| 河北省| 金华市| 天峨县| 柳江县| 定结县| 聂荣县| 武陟县| 盐津县| 辽中县| 沭阳县| 鹿泉市| 巴林右旗| 乌拉特后旗| 登封市| 富平县| 河间市| 磴口县| 巩留县| 磐石市| 左权县| 体育| 如皋市| 牡丹江市| 武胜县| 镇江市| 凭祥市| 嘉黎县| 三河市| 拜城县| 灵宝市| 青浦区| 和田县| 新巴尔虎右旗| 桑植县| 商南县| 甘南县| 南开区| http://m.97488093.cn http://m.40298286.cn http://m.10445719.cn http://m.56109400.cn http://m.55370809.cn http://m.44623279.cn